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KETAMINE’S MECHANISM OF ACTION: A PATH TO
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Major depressive disorder (MDD) is a common and debilitating psychiatric
disorder. Traditional antidepressants are of limited efficacy and take weeks to
months to yield full therapeutic effects. Thus, there is a clear need for effective
rapid-acting antidepressant medications. The N-methyl-D-aspartate receptor
(NMDA-R) antagonist, ketamine, has received a great deal of attention over the
last 20 years due to the discovery that a single subanesthetic dose leads to a rapid
antidepressant effect in individuals with treatment-resistant depression. Animal
and human research suggest that ketamine’s antidepressant effects are mediated
by a glutamate surge that leads to a cascade of events that result in synaptogenesis
and reversal of the negative effects of chronic stress and depression, particularly
within the prefrontal cortex (PFC). Preclinical and clinical data have provided
compelling insights into the mechanisms underlying the rapid-acting antide-
pressant effects of ketamine. This review discusses stress-related neurobiology of
depression and the safety, tolerability, and efficacy of ketamine for MDD, along
with a review of ketamine’s mechanism of action and prospective predictors of
treatment response. Research limitations and future clinical prospects are also
discussed. Depression and Anxiety 0:1–9, 2016. C© 2016 Wiley Periodicals, Inc.
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INTRODUCTION
Major depressive disorder (MDD) is a common and
debilitating psychiatric condition. Approximately 17%
of the US population will meet diagnostic criteria
for MDD within their lifetime.[1] MDD is the lead-
ing cause of worldwide disability among all psychiatric
disorders[2]; it is a chronic condition that is associated
with elevated risk of suicide, functional impairments, and
a variety of socioeconomic difficulties.

The Food and Drug Administration (FDA) has ap-
proved several drugs for the treatment of MDD, most
of which target monoaminergic systems. Current ap-
proved medications are of limited efficacy. A significant
proportion of patients do not show adequate response
to available antidepressants and sustained remission
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is uncommon.[3] Moreover, it takes weeks or even
months to gain the full therapeutic effects of tradi-
tional antidepressants.[4] There is a critical unmet need
for antidepressants with a rapid onset of action, par-
ticularly in patients who do not respond to traditional
antidepressants.

SURPRISING ANTIDEPRESSANT
EFFECTS OF KETAMINE

Ketamine is a glutamate N-methyl-D-aspartate recep-
tor (NMDA-R) antagonist that has been used clinically
since the 1960s, primarily as an anesthetic. Ketamine is
most commonly administered intravenously, but can also
be administered subcutaneously, intramuscularly, trans-
dermally, intranasally, intrarectally, or orally. Route of
administration substantially affects bioavailability, which
is as high as 100% with intravenous and as low as
20% with oral administrations.[5] Ketamine is metab-
olized rapidly; it has a plasma redistribution half-life of
4 minutes and plasma terminal half-life of 2.5 hr.[6]

Ketamine has seen a recent surge in interest follow-
ing findings that subanesthetic doses have rapid antide-
pressant effects.[7] An early study in treatment-refractory
MDD patients revealed that a single subanesthetic dose
of ketamine had a robust antidepressant effect within 4
hr.[7] Ketamine’s antidepressant effects have been repli-
cated several times since (see [8] for a review), including
four small placebo-controlled randomized controlled
trials (RCTs).[7, 9–11] Meta-analyses have supported the
robustness of ketamine’s rapid antidepressant effects rel-
ative to saline control and have shown it to be more ef-
fective than active placebo drugs with acute side-effect
profiles that optimize study drug blinding
(i.e. midazolam).[12–16]

Ketamine’s antidepressant effects typically emerge
about 4 hr after intravenous administration, well after
the drug has been cleared from the bloodstream. Depres-
sive symptoms usually return to baseline levels within
1 to 2 weeks.[17, 18] There is little data on ketamine’s
optimal dosing, preferred route of administration, and
the safety of repeated or chronic treatment. Recent pri-
marily open-label studies have shown that smaller doses
(e.g., 0.2 mg/kg[19]) and alternative routes of adminis-
tration (e.g., intramuscular[20] or intranasal[21]) yield an-
tidepressant effects that are comparable to the typical
0.5mg/kg intravenous dose. There is growing evidence
that repeated administrations can extend ketamine’s an-
tidepressant effects.[22, 23] Pilot data thus far suggests that
up to six 0.5mg/kg intravenous infusions, administered
three times per week for 2 weeks, are well tolerated and
can prolong ketamine’s antidepressant effects.[23, 24]

Single infusion of ketamine is generally well toler-
ated. Ketamine does, however, cause transient side ef-
fects within the first 2 hr of treatment.[17, 22] The most
common reported side effects of ketamine administra-
tion (0.5 mg/kg) include transient perceptual distur-
bances, dissociation, dysphoria, euphoria, and anxiety,

whereas the reported physical side effects include dizzi-
ness, nausea, and mild increase in blood pressure and
heart rate. Given the short half-life of ketamine, these
adverse effects abate within a few minutes of stopping ke-
tamine infusion and generally fully remit within 2 hr.[16]

Studies to-date primarily used the racemic form
of ketamine, which is composed of the enantiomers
R-ketamine and S-ketamine, the latter has higher affin-
ity to NMDA-R. A pilot clinical trial has recently shown
rapid-acting antidepressant effects using S-ketamine
(a.k.a. esketamine) 0.2 and 0.4 mg/kg administered in-
travenously over 40 min; these doses are believed to be
equivalent to 0.25 and 0.5 mg/kg of ketamine.[25] In-
tranasal administration of S-ketamine for the treatment
of depression is being developed and was granted a fast
track designation by the FDA (for a recent review of
other NMDA-R modulating agents see [12])

SYNAPTIC PLASTICITY AND THE
NEUROBIOLOGY
OF DEPRESSION

Synaptic plasticity refers to the process by which
neurons and neural circuits are constantly regulating
their excitability and connectivity. This is largely an
adaptive process; neurons and circuits adjust to chang-
ing organismic (e.g., development and aging) and envi-
ronmental circumstances (e.g., stress and learning).[26]

Synaptic plasticity is accomplished by regulating synap-
tic strength, numbers, and density. Synaptic plasticity
can be local or global.[27, 28] Long-term potentiation
(LTP) like plasticity and long-term depression (LTD)
like plasticity—also known as Hebbian plasticity—are
two forms of local plasticity. Homeostatic plasticity—a
type of global plasticity and form of synaptic scaling that
modulates strength of neuronal connectivity—is partic-
ularly relevant to models of MDD.

MDD is associated with prefrontal cortex (PFC)
and hippocampal gray matter abnormalities[29] that are
thought to be associated with synaptic downregula-
tion as a consequence of neuronal excitotoxicity.[30]

This downregulation is likely mediated by inflam-
matory cytokines and neurotrophins such as brain-
derived neurotrophic factor (BDNF), among many other
factors.[28, 31] Acute—psychologically circumscribed—
stress promotes synaptic survival and strength and leads
to behaviorally adaptive responses (e.g. enhanced work-
ing memory).[32] In contrast, prolonged stress, a model
of depression, is associated with neuronal atrophy and
synaptic depression in the PFC and hippocampus.[33, 34]

These changes are believed to be associated with stress-
induced perturbations in the glutamatergic system.[8] A
downstream effect of stress is prolonged excessive extra-
cellular glutamate[35], which is known to cause excitotox-
icity, dysfunctional synaptic strength, reduced dendritic
spine density, retraction of spines, and overall reduced
dendritic branching within the PFC (Fig. 1).[32, 36]
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Figure 1. A schematic model depicting stress-induced neuronal
atrophy and its normalization following ketamine treatment.
Chronic stress causes excess extracellular glutamate, and subse-
quent excitoxicity, leading to dendritic retraction, reduced den-
dritic arborization and spine density (A and B). Twenty-four
hours posttreatment, subanesthetic dose of ketamine reverses
the chronic stress-induced structural deficits culminating in rapid
increases in spine density (C and D).

Accumulating molecular findings provide insight into
the stress-related synaptic dysfunction that has been re-
lated to reduction in BDNF and/or to inhibition of the
mammalian target of rapamycin complex 1 (mTORC1)
in PFC regions. Depressive-like symptoms can be in-
duced in animals by reducing BDNF or inhibiting
mTORC1.[37, 38] Moreover, increasing BDNF or en-
hancing mTORC1 produce antidepressant-like effects
in rodents.[37, 38] These data suggest that enhancement
of BDNF and mTORC1 signaling are putative targets
for antidepressant treatment. Monoaminergic antide-
pressants were found to increase BDNF and synaptoge-
nesis following chronic, but not acute, treatment[32, 37];
this is consistent with the delayed antidepressant effect
of traditional antidepressants. Rapid-acting antidepres-
sants, such as ketamine, were shown to rapidly increase
BDNF and activate mTORC1 signaling, precipitating
enhanced synaptogenesis and connectivity.[39–42]

THE ANTIDEPRESSANT
MECHANISM OF ACTION

OF KETAMINE
The rapid-acting antidepressant effects of ke-

tamine are believed to be the result of a cascade of

events, which include (1) blockade of interneuronal
NMDA receptors,[43] (2) disinhibition of pyramidal
cells leading to a glutamate surge,[44] (3) activation of
the prosynaptogenic α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptors,[45] (4) block-
ade of the excitotoxic extrasynaptic NMDA receptors,[41]

and (5) activation of synaptogenic intracellular sig-
naling, including mTORC1[39] and BDNF pathways
(Fig. 2).[46]

Anesthetic doses of ketamine were found to de-
crease prefrontal glutamate neurotransmission.[44] Para-
doxically, preclinical studies have reliably shown that
subanesthetic doses of ketamine cause an increase in
glutamate cycling and extracellular glutamate, particu-
larly in the PFC.[44, 47–49] Increases in glutamate signal-
ing are thought to be primarily due to the ketamine’s
preferential blockade of NMDA receptors on a sub-
population of gamma-aminobutyric acid (GABA)ergic
interneurons[43, 50] (for review see [51]). Inhibition of
GABAergic interneurons lead to disinhibition of glu-
tamatergic neurons and a glutamate surge in the PFC.
This glutamate surge increases activation of AMPA
receptors. Increased AMPA receptor activation, cou-
pled with ketamine’s inhibition of extrasynaptic NMDA
receptors, initiates and facilitates postsynaptic acti-
vation of neuroplasticity-related signaling pathways,
including those involving BDNF and mTORC1.[39, 41]

Activation of extrasynaptic NMDA receptors reduces
synaptic strength (e.g., reduced dendritic arborization,
decreased dendritic length, synaptic loss, and neuronal
death).[52] As such, blockage of extrasynaptic NMDA
receptors promotes synaptogenesis. Ketamine has been
shown to enhance synaptogenesis at rest (independent of
glutamate activation) through (1) inhibition of eukary-
otic elongation factor 2 (eEF2) kinase, (2) desuppres-
sion of eEF2, and (3) increased BDNF translation.[41]

Additionally, selective genetic deletion of pyramidal
neurons’ GluN2B subunits—which are abundant in ex-
trasynaptic NMDA receptors—mimics the antidepres-
sant and synaptic effects of ketamine.[53] Together,
these neuroplasticity-related processes culminate in in-
creases in AMPA receptors, synaptic strength, and
synaptogenesis (Fig. 2); leading to a rapid rever-
sal of stress and depression-induced neuronal atrophy
(Fig. 1).

Convergent evidence support the hypothesis that
AMPA receptor activation and mTOR and BDNF sig-
naling mediate ketamine-induced synaptogenesis and
ketamine’s antidepressant effects.[39, 45, 46, 54, 55] Admin-
istration of AMPA antagonists block ketamine’s an-
tidepressant effect[55] in a dose-dependent fashion.[56]

However, it is not yet known whether AMPA
receptor activation contribute to the synaptic and an-
tidepressant effects through postsynaptic depolariza-
tion that is required for activation of synaptic NMDA
receptors, or through direct activation of intracellu-
lar downstream pathways. Blockage of mTOR sig-
naling blocks ketamine-induced synaptogenesis and
ketamine’s antidepressant-like effects.[39] Ketamine
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Figure 2. Mechanism of action of ketamine’s rapid antidepressant effects. It is proposed that subanesthetic doses of ketamine will
simultaneously activate the “GO,” and inhibits the “STOP,” pathways. The ketamine-induced alterations of both pathways converge to
increase BDNF, protein synthesis, synaptic strength, and synaptogenesis. In this model, ketamine activates the “GO” pathway by (A-1)
preferentially blocking of NMDA receptors located on a subpopulation of interneurons, (A-2) disinhibiting pyramidal neurons, (A-3)
generating a transient glutamate surge and AMPA receptors activation, (A-4) stimulating BDNF release, (A-5) activating TrkB receptors,
(A-6) stimulating the mTORC1 signaling, (A-7) inducing BDNF translation, and (A-8) increasing protein synthesis, AMPA cycling, and
synaptogenesis. In parallel, ketamine blocks the “STOP” pathway by (B-1) blocking extrasynaptic NMDA receptors, (B-2) disinhibiting
eEF2, (B-3) inducing BDNF translation, and (B-4) increasing protein synthesis, AMPA cycling, and synaptogenesis. AMPA, α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid; BDNF, brain-derived neurotrophic factor; mTORC1, mammalian target of rapamycin
complex 1; TrkB, tyrosine kinase B; eEF2, eukaryotic elongation factor 2; NMDA, N-methyl-D-aspartate; GABA, gamma-aminobutyric
acid; Glu, glutamate.

fails to exert an antidepressant effect or to induce
PFC synaptogenesis in rodents with impaired BDNF
transmission.[46, 57]

Administration of ketamine to rodents has recently
been shown to inhibit brain glycogen synthase kinase-3
(GSK-3), a mechanism also shared by lithium.[58] Ke-
tamine increases the phosphorylation of GSK-3 and
rodents with a knockout mutation that blocks the phos-
phorylation of GSK-3 do not respond to ketamine in
a behavioral model of depression.[58] Moreover, the
synaptogenesis and antidepressant-like effects of a sub-
therapeutic dose of ketamine were rescued when given
together with a subtherapeutic dose of lithium or other
GSK-3 inhibitors.[59, 60] These effects involved rapid
activation of the mTOR signaling pathway, increased
synaptic spine density/diameter, and increased synap-
tic strength in the medial prefrontal cortex (mPFC)
layer 5 pyramidal neurons and antidepressant responses
that persisted for up to 1 week in the animal model of
depression.[59] Although the presented model focused
on the well-studied NMDA-based ketamine’s pathways,
other promising complementary mechanisms have been
proposed and await supportive evidence. These pro-
posed mechanisms include the theoretical possibility that
the observed rapid-acting antidepressant effects could
be mediated by ketamine’s effect on intracellular lyso-
somes, on the opioid system, or the nicotinic receptors
(see [61–63]).

BIOMARKERS OF KETAMINE’S
ANTIDEPRESSANT EFFECTS

Animal studies have shown that ketamine promotes
the rapid development of new synapses in the mPFC.[39]

Ketamine-enhanced synaptogenesis persists for up to 7
days after administration, long after the drug has been
fully metabolized.[39, 64] This parallels the timeline of an-
tidepressant effects, and animal research has provided
evidence that these changes in neuroplasticity under-
lie ketamine’s antidepressant properties.[40, 65] Positron
emission tomography (PET) studies demonstrate that
low-dose ketamine acutely increases brain metabolism,
particularly within the PFC.[66–68] Given the direct re-
lation between glutamate cycling and neural energy
consumption,[69] these studies also provide indirect ev-
idence of ketamine-induced alterations in glutamate
neurotransmission.

As described above, synaptic connectivity is affected
following depression and prolonged stress and these
synaptic abnormalities are rapidly reversed by ketamine
treatment.[70] Therefore, neuroimaging studies of the ef-
fects of ketamine on brain circuitry and connectivity may
play a critical role in unraveling its underlying mecha-
nism as well as provide unique insight into normal brain
functioning. A pilot MDD study recently identified ab-
normal reduction in caudate activation, as measured by
functional magnetic resonance imaging (fMRI), in re-
sponse to images of happy faces. Ketamine treatment
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increased caudate activation, however, no correlation
was found between caudate activation and response to
treatment.[71] Following ketamine treatment, higher an-
tidepressant response was associated with increased con-
nectivity between the caudate and several brain regions,
including mPFC.[71]

Using magnetoencephalography (MEG), Cornwell
et al. showed a significant increase in somatosensory
evoked fields, a putative measure of synaptic connectivity
and cortical excitability, 6 hr after drug administration
in depressed patients who responded to ketamine, but
not in nonresponders.[72] Lazzaro et al. used transcranial
magnetic stimulation to show that low-dose ketamine
increased corticospinal excitability (i.e., enhanced mo-
tor evoked potentials and decreased motor threshold)
in healthy subjects after drug administration.[73] A re-
cent sleep study used electroencephalography (EEG) to
show that a subanesthetic dose of ketamine increased
sleep slow oscillations, a marker of synaptic plastic-
ity, among depressed patients the night after ketamine
administration.[74] This same study showed that plasma
BDNF increased among all patients 4 hr following ke-
tamine administration, and that BDNF increases corre-
lated with enhanced synaptic strength in the responders
group.[74] A more recent study using a sample of pa-
tients diagnosed with MDD showed that plasma BDNF
increased more among responders compared to nonre-
sponders following ketamine administration.[75] How-
ever, an earlier study failed to detect a significant relation
between serum BDNF and the antidepressant effects of
ketamine.[76]

PROSPECTIVE PREDICTORS OF
KETAMINE’S ANTIDEPRESSANT

EFFECTS
Investigators have utilized a variety of experimen-

tal methods to investigate prospective predictors of
ketamine’s antidepressant effects. Hippocampal vol-
ume reduction in MDD has been related to glutamate
dysregulation and treatment resistance to traditional
antidepressants.[77] In contrast, comparable to other
glutamate-modulating agents,[78] ketamine was found in
a pilot study to exert its highest antidepressant effects in
patients with reduced hippocampal volume as measured
by magnetic resonance imaging (MRI).[79]

Salvadore et al. conducted a series of MEG studies
to advance this issue. The first such study showed
that decreased pretreatment pregenual anterior
cingulate cortex (ACC) activity during an affective
face viewing task was associated with an attenuated
antidepressant response to ketamine.[80] Conversely,
decreased pretreatment pregenual ACC activity
during a working memory (updating) task was as-
sociated with better response to ketamine.[81] Sim-
ilarly, poorer beta desynchronization between the
pregenual and subgenual ACC during the working
memory task was associated with greater antidepressant

response. Poorer coherence, a measure of func-
tional connectivity, between the pregenual ACC
and amygdala during the working memory task was
also associated with a greater antidepressant re-
sponse to ketamine.[81] Taken together, these findings
suggest that hyperactivity of the pregenual ACC
during emotional processing and hypoactivity or
hypoconnectivity of the pregenual ACC during
cognitive processing are associated with greater antide-
pressant response to ketamine. In general, the ACC can
be divided into cognitive and affective subdivisions, with
dorsal sections generally dedicated to cognitive functions
and ventral sections—including the pregenual ACC—
dedicated to affective functions.[82] As such, one inter-
pretation of Salvadore et al.’s findings is that ketamine
may act to strengthen synaptic connectivity in brain
regions regulating ACC and amygdala activity.[83, 84]

Few studies have utilized magnetic resonance spec-
troscopy (MRS) to assay glutamate neurotransmit-
ter concentration among depressed patients treated
with ketamine. One study showed that depressed
patients with lower pretreatment PFC (glutamate
+ glutamine)/glutamate ratios reported a greater
antidepressant response to ketamine.[85] Yet this study
failed to find a significant association between total PFC
glutamate concentrations and treatment response.[85]

Another study failed to find significant correlations
between occipital glutamate, glutamine, or GABA con-
centrations and treatment response.[11] Recently, a pre-
liminary MRS study found rapid increases in the total
level of GABA and Glx (an MRS signal comprising glu-
tamate + glutamine) in the medial prefrontal cortex of
eight depressed patients.[86]

CONCLUSIONS AND FUTURE
DIRECTIONS

A single subanesthetic dose of ketamine has rapid an-
tidepressant effects. These effects emerge approximately
4 hr after drug administration, suggesting ketamine’s an-
tidepressant effects are not a direct effect of the drug it-
self, but rather a downstream effect of the acute reaction
of the brain to the drug. Ketamine’s antidepressant ef-
fects are typically sustained for 1–2 weeks, long after the
drug has been fully metabolized. Clinical data suggest
that ketamine is well tolerated and side effects typically
abate within 1–2 hr after drug administration. Although
there is promising evidence that multiple doses of ke-
tamine can enhance or prolong the drug’s antidepressant
effects, these data are in their infancy. Side effects and
inconvenience associated with the current standard ad-
ministration (0.5 mg/kg intravenous) could potentially
be mitigated with alternative routes of administration
or smaller doses; both of which appear to be associated
with antidepressant effects.[21] There is an urgent need
for dose–response studies, including investigations that
use more convenient routes of administration or multi-
ple doses. Researchers should also continue investigating
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alternative means for extending ketamine’s antidepres-
sant effects. Given the putative mechanisms of action, it is
plausible that other agents that enhance prefrontal plas-
ticity might extend, enhance, or even replace ketamine’s
antidepressant effects.

In summary, preclinical and clinical data suggest that
low doses of ketamine initiate brain plasticity processes
and increases prefrontal connectivity, thus reversing po-
tential effects of chronic stress and depression. These
antidepressant effects are likely mediated by a gluta-
mate surge in the PFC, increased AMPA receptor ac-
tivation, and increased AMPA cycling; the latter of
which is itself mediated by neuroplasticity-related sig-
naling pathways, particularly BDNF and mTORC1.
Data have also shown that ketamine’s at rest blockage
of NMDA receptors, presumably extrasynaptic, may fa-
cilitate synaptogenesis. These processes result in new
spine growth, improved spine density, and dendritic
branching; all of which enhance local and global neural
connectivity. Insights into nearly all of these processes
were ascertained from animal research. There is need for
research with human subjects, particularly in depressed
subjects, to determine if these candidate mechanisms of
action mediate ketamine’s antidepressant effects in de-
pressed patients. There is also a lack of clinical research
focused on prospectively predicting which MDD pa-
tients will benefit from ketamine. Although several pilot
studies provided initial evidence of potential biomark-
ers of ketamine’s antidepressant effects, it is important
to underscore the preliminary nature of these studies
and the need for replication prior to making any firm
conclusions. Clinical studies should integrate pretreat-
ment behavioral and biological assessments to better
characterize the probability of treatment response. This,
coupled with the aforementioned future direction, may
allow for targeted dosing modifications or treatment
augmentation strategies.

There is growing evidence for ketamine’s effi-
cacy for a variety of other psychiatric conditions,
including: bipolar disorder,[87] posttraumatic stress
disorder,[88, 89] obsessive–compulsive disorder,[90, 91] and
substance abuse/dependence.[92] Ketamine has also been
shown to rapidly reduce acute suicidality.[19, 93] Con-
trolled research is needed to determine if ketamine’s
clinical effects are reliable for these other conditions.
Although there is much to be learned about ketamine’s
antidepressant effects, it is even more unclear how ke-
tamine affects other psychiatric conditions. It is likely
that the glutamate surge, prefrontal synaptogenesis, and
prefrontal connectivity are implicated in ketamine’s psy-
chiatric effects for nondepressive disorders, but these
ideas are largely hypothetical at present.

Investigations of ketamine’s antidepressant mecha-
nism of action have aided in the development of alter-
native models of depression and paved the way for the
development of novel pharmacological antidepressant
agents. Drugs that target neuroplasticity-related signal-
ing pathways and synaptogenesis hold particular promise

for MDD and other psychiatric disorders associated with
chronic stress.
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